Çokgen, düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan n tane (n ³ 3) noktayı ikişer ikişer birleştiren parçalarının oluşturduğu kapalı şekillerdir.



  1. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.
  2. Dışbükey (konveks) çokgenler: Kenar doğrularının hiçbiri, çokgeni kesmiyorsa bu çokgenlere dış bükey çokgen denir.


İzet bukey

Çokgenler ve Özellikleri


ç bükey çokgenler

Köşegenlerinin bazıları çokgenin içinde, bazıları dışındaysa bu iç bükey çokgendir.

Dışbükey Çokgenlerin Özellikleri

Köşegenlerinin tamamı çokgenin iç bölgesinde ise o çokgen dış bükey çokgendir.


  • İç açılar toplamı: Dış bükey bir çokgenin n tane kenarı var ise iç açılarının toplam

(n -2) . 180°


  • Dış açılar toplamı: Bütün dışbükey çokgenlerde

Dış açılar toplamı =360°


  • Köşegenlerin sayısı: n kenarlı dışbükey bir çokgenin

köşegen sayısı=n(n-3)/2


  • Bir köşeden (n – 3) tane köşegen çizilebilir.


  • n kenarlı dışbükey bir çokgenin içerisinde, bir köşeden köşegenler çizilerek

(n – 2) adet üçgen elde edilebilir.

Düzgün Çokgenler

Tüm kenarları ve tüm açıları eşit olan çokgenlere düzgün çokgenler denir. düzgün çokgenin bir iç açısının ölçüsü (n-2).180/2 dir.Bir dış açısının ölçüsü ise 360/n dir.(n=kenar sayısı)

Düzgün Çokgenin Alanı



  • n kenarlı düzgün çokgenin bir kenarı a ve içteğet yarıçapı r ise alanı

Alan=n.a.r/2 (r= içteğet çember merkezi ile iki köşenin oluşturduğu üçgenin yüksekliği)


  • n kenarlı bir düzgün çokgende bir kenarı gören merkez açı(Bu açı aynı zamanda dış açıdır) α=360/n ve çevrel çemberin yarıçapı R ise çokgenin alanı

Alan=n.R².sinα/2 Ör: Düzgün bir altıgen altı tane eşkenar üçgenden oluşur. Bir kenarına a dersek alanı hesaplama formülü şudur: Alan=6.a²√3/4 a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.

b. Dışbükey (konveks) çokgenler: Kenar doğrularının hiçbiri, çokgeni kesmiyorsa bu çokgenlere denir.
2. Dışbükey Çokgenlerin Özellikleri a. İç açılar toplamı: Dış bükey bir çokgenin n tane kenarı var ise iç açılarının toplamı (n - 2) . 180° Üçgen için (3 – 2) . 180° = 180° Dörtgen için (4 – 2) . 180° = 360° Beşgen için (5 – 2) . 180° = 540° b. Dış açılar toplamı: Bütün dışbükey çokgenlerde, Dış açılar toplamı =360° c. Köşegenlerin sayısı: n kenarlı dışbükey bir çokgenin Bir köşeden (n – 3) tane köşegen çizilebilir. · n kenarlı dışbükey bir çokgenin içerisinde, bir köşeden köşegenler çizilerek (n – 2) adet üçgen elde edilebilir.